Diagnostic test using recombinant omega-5 gliadin for wheat-dependent, exercise-induced anaphylaxis

Summary
Food-dependent, exercise-induced anaphylaxis (FDEIA) is a distinct form of food allergy induced by physical exercise. Symptoms are typically generalized urticaria and severe allergic reactions such as shock or hypotension. Whereas numerous food items are responsible for the development of FDEIA, wheat is reported to be the allergen with the highest frequency in Japan. Skin tests and in vitro serum food-specific IgE assays are currently used for diagnosis but their sensitivity and specificity are not always satisfactory.

A challenge test consisting of ingestion of the suspected food followed by intense physical exercise is the only reliable method of determining the causative food and of diagnosing the disease. The challenge test is, however, inconvenient and even dangerous because in some cases it induces an anaphylactic shock.

A reliable in vitro diagnostic method is thus required for patients with FDEIA. We revealed that wheat omega-5 gliadin and high molecular weight glutenin (HMW-glutenin) are major allergens in wheat-dependent, exercise-induced anaphylaxis (WDEIA). A simultaneous detection of IgE specific to epitope sequences of both omega-5 gliadin and HMW-glutenin using ImmunoCAP™ is found to achieve higher sensitivity and specificity compared with the in vitro serum food-specific IgE assays currently used to diagnose WDEIA.

In addition, the recombinant omega-5 gliadin ImmunoCAP allergen contains the immuno-dominant peptides since the results correlated well with the IgE antibody binding to the identified major epitope peptides in omega-5 gliadin used to identify patients with WDEIA and wheat allergy.

Introduction
Nowadays, IgE-mediated hypersensitivity to foods is clearly recognized as food allergy. The allergic reaction usually appears after ingestion of allergenic food. However, a number of cases show anaphylactic reaction only during or in association with exercise after ingestion of foods. This clinical entity was termed food-dependent, exercise-induced anaphylaxis (FDEIA). The anaphylactic symptoms are usually induced by physical exercise after food ingestion and approximately 80% of patients display symptoms within 2 hours after eating. The symptoms include urticaria, angioedema, respiratory symptoms, abdominal pain, fatigue and loss of consciousness. Numerous episodes of these symptoms are commonplace.

In many cases, strenuous exercise, such as running or playing tennis, triggers anaphylaxis after ingesting specific food(s) [1-3]. However, even milder exercise often induces symptoms. Additional triggering factors in FDEIA have been reported to include general physical conditions, drugs, alcohol and atmospheric conditions. Induction of anaphylaxis has been clearly demonstrated to be dependent on the amount of allergen ingested in patients with wheat-dependent, exercise-induced anaphylaxis (WDEIA) [4]. Aspirin intake has been well documented to induce symptoms, or to provoke more severe symptoms compared with symptoms without aspirin intake [5-7]. Aspirin may also induce symptoms in combination with food ingestion, even without exercise challenge [6, 7].

Currently, the useful diagnostic tests for food allergy are skin tests, in vitro serum food-specific IgE assays, and oral food challenges. Skin tests (a skin prick test is usually performed) and in vitro serum food-specific IgE assays do provide some important information. However, a positive reaction in skin prick testing or a positive value in in vitro serum food-specific IgE assays does not necessarily indicate...
the causative foods. ImmunoCAP™ is an accurate and standardized procedure for determining allergen-specific IgE in sera and is now widely used for diagnosing food allergy. The utility of food-specific IgE concentrations in predicting clinical reactivity has been reported in egg, milk, peanut and fish allergy [8]. In cereal allergy, especially WDEIA, this is not always the case. Wheat and gluten-specific IgE measurement is available for diagnosing WDEIA with ImmunoCAP allergen, but approximately 30% of patients with definite WDEIA are negative for wheat or gluten [9]. In addition, a considerable number of patients with atopic dermatitis have positive ImmunoCAP results for wheat and/or gluten, yet have no episode of IgE-mediated allergic reactions after ingesting wheat products. Thus, the measurement of food-specific IgE antibodies using wheat ImmunoCAP is not always satisfactory for diagnosing FDEIA.

Challenge tests

Challenge tests will give a definite diagnosis of FDEIA in patients with a history of occasional anaphylaxis after food ingestion. If a definite food has not been identified as the cause of the reaction, a food challenge test is necessary because correct identification of the causative food might be life-saving. Since food challenge alone usually does not elicit anaphylactic symptoms, food ingestion combined with exercise is needed to confirm the causative food as well as the diagnosis [5, 10]. The challenge includes food challenge alone, exercise alone, and a combination of food ingestion and exercise. The exercise challenge has been performed according to the protocol of Bruce that has been used for diagnosing ischemic heart disease. However, intake of a specific food followed by exercise does not always provoke the anaphylactic symptoms. Challenge tests can confirm the diagnosis of FDEIA only in up to 70% of patients, even in patients with histories of recurrent episodes of anaphylaxis during exercise after ingestion of specific foods [5, 10]. Induction of anaphylactic symptoms was documented to be dependent on the amount of food allergen ingested [4], indicating that insufficient amounts of food allergen ingested may cause cases of false-negative clinical response in challenge testing. Another possible factor for causing false-negative results is inappropriate exercise employed in the tests. Some other conditions such as fatigue, lack of sleep, or cold environments are considered to affect the development of the anaphylactic symptoms.

As aspirin intake has been well documented to provoke more severe symptoms in several patients [5-7, 10], food challenge with aspirin-pretreatment has been performed for diagnosis. In fact, a number of patients elicited anaphylactic symptoms by a challenge with just a combination of food and aspirin, even without exercise and despite them never having experienced anaphylactic symptoms induced by aspirin or non-steroidal, anti-inflammatory drugs.

Determination of wheat allergens and IgE-binding epitopes

A variety of foods have been described as causal foods in FDEIA. These include shellfish [1, 5, 6, 11, 12], wheat products [3-7, 11, 13, 14], vegetables [2, 10, 11, 15], fruits [5, 11, 16], nuts [11], egg [11, 17], mushrooms [18], corn [11, 19], garlic [11], pork/beef [11], and rice [11]. In European countries, vegetables are common food allergens causing FDEIA [11]. However, in Japan, wheat is the most frequent allergenic food causing FDEIA [20]. Among 175 reported Japanese cases, approximately 60% were found to be wheat-induced (Fig. 1).

Wheat is composed of four classes of protein; albumins, globulins, gliadins, and glutenins. Albumins and globulins are water/salt soluble proteins, while gliadins and glutenins are water/salt insoluble proteins termed gluten [21]. Wheat allergens have been mainly analyzed in baker’s asthma, a hypersensitivity to inhaled wheat flour, and several antigens were identified in both the water/salt soluble and insoluble proteins [22, 23]. Wheat allergens in FDEIA have been rather controversial. Wheat gliadins, which are major components of the gluten fraction, were found to be the allergens in WDEIA using skin testing and immunoblotting [24-26] studies. Recently, omega-5 gliadin has been identified as a cause of WDEIA [27, 28]. An analysis with a panel of purified gliadins and glutenins revealed that 80% of patients with WDEIA react most strongly to omega-5 gliadin, and the rest most strongly to high molecular weight glutenin (HMW-glutenin) [29]. When IgE-binding epitopes within the primary sequence of omega-5 gliadin were analyzed using arrays of overlapping peptides, seven epitopes (QQIPQQQ, QQLPQQQ, QQFPQQQ, QQSPSEQ, QQSPQQQ, QQVPQQQ and PYPP) were detected [29]. By using sera of 15 patients, four of these peptides (QQIPQQQ, QQFPQQQ, QQSPSEQ and QQSPQQQ) were found to be dominant epitopes. Mutational analysis of QQIPQQQ and QQFPQQQ indicated that amino acids at positions 1(Q), 4(P), 5(Q), 6(Q) and 7(Q) were critical for IgE antibody-binding [29]. IgE antibody-binding epitopes in the HMW-glutenin were identified to be QQPGQ, QQPGQGQQ and QQSGQGQQ using the same method [9].

Figure 1. Frequency of causative foods in Japanese patients with FDEIA.
Detection of epitope-specific IgE in the sera of the patients with WDEIA

When the IgE antibody-binding epitopes of omega-5 gliadin (peptide A) and HMW-glutenin (peptide B) were conjugated to ImmunoCAP to determine the specific IgE antibodies to these epitope peptides, 97% (29/30) of the patients with WDEIA were found to be positive to either of the two, whereas gluten-ImmunoCAP positively recognized only 80% (24 of 30) of the patients (Fig. 2) [9]. In addition, specific IgE antibody values using epitope peptide-ImmunoCAP were much higher than the gluten-specific test in most patients with WDEIA, indicating higher sensitivity with the epitope system. This is due to a higher content of epitope sequences in the epitope-peptide ImmunoCAP than in the gluten ImmunoCAP. Ten of 25 patients with atopic dermatitis who had no obvious allergic reactions after ingesting wheat products had a positive ImmunoCAP for epitope peptides, indicating the low specificity of the test. When the positive cut-off value was set at 1.0 kU/L, both the sensitivity and specificity of the epitope peptide-specific CAP test were satisfactory. Sensitivity reached 97% (29/30) and specificity 98% (1/50) [9].

Detection of recombinant omega-5 gliadin-specific IgE

Recently, recombinant food allergens of constant quality and quantity have been produced and tested in the diagnosis of many food allergies [30-32]. ImmunoCAP conjugated with recombinant omega-5 gliadin proteins was found to be a useful tool. We cloned a omega-5 gliadin gene that encodes a 439 amino acid-long protein with a calculated mass of 53 kDa and, by means of the expression system in Escherichia coli, constructed a recombinant C-terminal half-protein (178 amino acids) of the omega-5 gliadin that included all IgE antibody-binding epitopes [32]. The recombinant omega-5 gliadin was found to have an IgE antibody-binding ability comparable to natural omega-5 gliadin. When the levels of specific IgE antibodies to recombinant omega-5 gliadin were measured with ImmunoCAP in 55 patients with WDEIA, the value was well correlated with those of specific IgE antibody to the synthetic peptide epitopes of omega-5 gliadin conjugated to ImmunoCAP (Fig. 3).

The usefulness of ImmunoCAP with recombinant omega-5 gliadin was also confirmed when identifying children having severe allergic reactions to wheat. When 30 children having high serum titers of wheat-specific IgE antibodies (14 positive in wheat challenge test, the rest negative) were investigated with ImmunoCAP with recombinant omega-5 gliadin, 11 of the 14 with a positive provocation test had considerable levels of IgE antibodies to recombinant omega-5 gliadin (Dahlström J. et al., submitted). In contrast, only 3 of the 16 children with a negative provocation test had detectable IgE antibody levels to omega-5 gliadin, indicating that measurement of IgE antibodies to recombinant omega-5 gliadin is a very good tool to identify children at risk of having severe immediate reactions to wheat.

Figure 2. Detection of specific IgE to wheat, gluten and epitope peptides of omega-5 gliadin (peptide A) and HMW-glutenin (peptide B) in WDEIA.

Figure 3. Correlation between IgE antibodies to recombinant omega-5 gliadin ImmunoCAP™ allergen and omega-5 gliadin peptide-epitope-conjugated ImmunoCAP using sera from patients with WDEIA.
References

1. MAULTZ RM, PRATT DS, SCHOCKET AL.
Exercise-induced anaphylactic reaction to shellfish.

2. KIDD JM 3RD, COHEN SH, SOSMAN AJ, FINK JN.
Food-dependent exercise-induced anaphylaxis.

3. KUSHIMOTO H, AKIO T.
Masked type I wheat allergy.
Arch Dermatol 1985;121:355-60.

4. HANAKAWA Y, TOHYAMA M, SHIRAKATA Y, MURAKAMI S, HASHIMOTO K.
Food-dependent exercise-induced anaphylaxis: a case related to the amount of food allergen ingested.

Food-dependent, exercise-induced anaphylaxis: a study on 11 Japanese cases.

6. HARADA S, HORIKAWA T, ASHIDA M, KAMO T, NISHOKA E, ICHIHASHI M.
Food-dependent exercise-induced anaphylaxis: influence of concurrent aspirin administration on skin testing and provocation.

7. AIHARA M, MIYAZAWA M, OSUNA H, TSUBAKI K, IKEBE T, AIHARA Y, IKEZAWA Z.
Food-dependent exercise-induced anaphylaxis: influence of concurrent aspirin administration on skin testing and provocation.

8. SAMPSON HA.
Utility of food-specific IgE concentrations in predicting symptomatic food allergy.

9. MATSUO H, KONNO K, NHARA H, MORITA E.
Specific IgE determination to epitope peptides of omega-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis.

Diagnostic work-up for food-dependent, exercise-induced anaphylaxis.

Food-dependent exercise-induced anaphylaxis: clinical and laboratory findings in 54 subjects.
Int Arch Allergy Immunol 2001;125:264-72.

12. MCNEIL D, STRAUSS RH.
Exercise-induced anaphylaxis related to food intake.

13. ASHARA M, KOTONORI T, TAKAHASHI Y, OSUNA H, OHNUMA S, IKEZAWA Z.
The necessity for dual food intake to provoke food-dependent exercise-induced anaphylaxis (FEIAn): a case report of FEIAn with simultaneous intake of wheat and umeboshi.

14. SAVOLAINEN J.
Baker's asthma: diversity of allergens.

15. VARJONEN E, VAINIO E, KALIMO K.
Life-threatening, recurrent anaphylaxis caused by allergy to gliadin and exercise.

16. BOHLE B, VIETHS S.
Molecular cloning, recombinant expression and IgE-binding epitope of omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

17. WILHELM S, BUCHHIBER EM, BROCH KJ, MOSS J, GUINEY TE.
Food-dependent, exercise-induced anaphylaxis.

18. OKANO M, SAKUMA Y.
Food-dependent exercise-induced anaphylaxis due to matsutake mushrooms.

19. PAULS JD, CROSS D.
Food-dependent exercise-induced anaphylaxis to corn.

20. HORIDA S, HIRAKAWA T, ICHIHASHI M.
A study of food-dependent exercise-induced anaphylaxis by analyzing the Japanese cases reported in the literature.

21. SANDFORD CR, TATHAM AS, FIDO R, WELCH JA, JONES MG, TEE RD, SHEWRY PR, NEWMAN TAYLOR AJ.
Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity.

Wheat flour peroxidase is a prominent allergen associated with baker's asthma.

23. SAMPSON HA.
Utility of food-specific IgE concentrations in predicting symptomatic food allergy.

24. SAVOLAINEN J.
Baker's asthma: diversity of allergens.

25. VARJONEN E, VAINIO E, KALIMO K.
Life-threatening, recurrent anaphylaxis caused by allergy to gliadin and exercise.

26. MORITA E, YAMAMURA Y, MIHARA S, KAMEYOSHI Y, YAMAMOTO S.
Food-dependent exercise-induced anaphylaxis: a report of two cases and determination of wheat-gamma-gliadin as the presumptive allergen.

27. PALOSUO K, ALENIUS H, VARJONEN E, KOVYLUHTA M, MIKKOLA J, KESKINEN H, KALIKONEN N, REUNALA T.
A novel wheat gliadin as a cause of exercise-induced anaphylaxis.

28. KESKINEN H, KALKKINEN N, REUNALA T.
Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity.

29. SALCEDO G.
In improving diagnostic tests for food allergy with recombinant allergens.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

31. Bohole B, Vieths S.
In improving diagnostic tests for food allergy with recombinant allergens.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.

Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis.
The objective of this Foundation is to encourage progress in allergy research through the recognition of an outstanding investigator by means of an

INTERNATIONAL AWARD of USD 50 000

This Award, characterized as a personal prize, is offered annually to a scientist, less than 40 years of age, who has made outstanding contributions to the field of allergy through creative and independent research efforts. The scientific achievements of the candidate should have contributed to a better understanding of allergic inflammation, as well as to improved diagnostic procedures and to improved treatment, resulting in optimal patient management.

Subject for 2007

Impact of allergy – from mechanisms to treatment

Selection of the Award recipient will be made by an International Scientific Committee, made up of internationally recognized senior scientists, today chaired by Prof Paul O’Byrne, Hamilton, ON, Canada. The judgement of the International Scientific Committee will be based on the submission of an unpublished review article, describing the research achievements and research goals of the candidate. The contribution of the recipient of the International Award and Honorable Mention will be published.

Look for advertisements in allergy and immunology journals late 2006 and beginning of 2007.

For further information and to obtain application forms, please, visit PhARF web site at www.phadia.com or contact the:

PhARF Office, attn: Marie Lantz, c/o Phadia AB, P. O. Box 6460, F35-4, SE-751 37 Uppsala, Sweden – or e-mail: marie.lantz@phadia.com

The application must be received no later than March 12, 2007